
- 時間:2022-12-27 02:29:05
- 小編:ZTFB
- 文件格式 DOC



每個人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
有關(guān)勾股定理小論文(精)一
我說課的題目是華師版八年級上冊第十四章第一節(jié)第一課時《勾股定理》。
如果說數(shù)學(xué)思想是解決數(shù)學(xué)問題的一首經(jīng)典老歌,那么本節(jié)課蘊(yùn)含的由特殊到一般的思想、數(shù)學(xué)建模的思想、轉(zhuǎn)化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學(xué)習(xí)了二次根式之后的教學(xué),是在學(xué)生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行的后繼學(xué)習(xí),是中學(xué)數(shù)學(xué)幾個重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識的靈魂,在實(shí)際生活中有著極其廣泛的應(yīng)用。
勾股定理的發(fā)現(xiàn)、驗(yàn)證和應(yīng)用蘊(yùn)含著豐富的文化價值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。
新課標(biāo)下的數(shù)學(xué)教學(xué)不僅是知識的教學(xué),更應(yīng)注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學(xué)中的地位和作用,結(jié)合初二學(xué)生不愛表現(xiàn)、好靜不好動的特點(diǎn),我確定本節(jié)教學(xué)目標(biāo)如下:
1、探索并利用拼圖證明勾股定理。
2、利用勾股定理解決簡單的數(shù)學(xué)問題。
3、感受數(shù)學(xué)文化,體會解決問題方法的多樣性和數(shù)形結(jié)合的思想。
本著課標(biāo)的要求,在吃透教材的基礎(chǔ)上,我確定本節(jié)的教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵如下:
勾股定理的證明和簡單應(yīng)用是本節(jié)的重點(diǎn),用拼圖的方法證明勾股定理是難點(diǎn),而解決難點(diǎn)的關(guān)鍵是充分利用圖形面積的各種表示方法構(gòu)造恒等式。
為了講清重點(diǎn)、突破難點(diǎn)、抓住關(guān)鍵,使學(xué)生達(dá)到預(yù)定目標(biāo),我對教法和學(xué)法分析如下:
新課程標(biāo)準(zhǔn)強(qiáng)調(diào)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),最大限度的激發(fā)學(xué)生學(xué)習(xí)積極性,新課程下的數(shù)學(xué)教師更應(yīng)是學(xué)生學(xué)習(xí)活動的組織者、引導(dǎo)者、合作者,因此,鑒于教材的重點(diǎn)和初二學(xué)生的認(rèn)知水平,我以學(xué)生充分預(yù)習(xí)為前提,以學(xué)生的動手操作、講解為中心,讓學(xué)生親歷親為,體會做數(shù)學(xué)的過程,激發(fā)學(xué)生的探索興趣,使課堂活躍起來,提高課堂效率。運(yùn)用觀察法、歸納法、引導(dǎo)發(fā)現(xiàn)法、討論法等多種教學(xué)方法相結(jié)合的形式,讓學(xué)生充分展示預(yù)習(xí)成果,體驗(yàn)成功的快樂,為終身學(xué)習(xí)和發(fā)展打下堅實(shí)的基礎(chǔ)。為了增大課堂容量、給學(xué)生創(chuàng)設(shè)高效的數(shù)學(xué)課堂,給學(xué)生提供足夠從事數(shù)學(xué)活動的時間,以導(dǎo)學(xué)案的形式、運(yùn)用多媒體輔助教學(xué)。
:
學(xué)法是學(xué)生再生知識的法寶,為了把學(xué)生學(xué)習(xí)過程當(dāng)作認(rèn)知事物的過程來解決,教學(xué)中我首先引導(dǎo)學(xué)生先動手操作,再合作交流,培養(yǎng)學(xué)生良好的學(xué)習(xí)品質(zhì)和與人合作的能力;接下來,我讓學(xué)生獨(dú)立思考,點(diǎn)撥學(xué)生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點(diǎn),然后通過學(xué)生展示成果讓學(xué)生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關(guān)健,以自己拼圖操作、講解展示預(yù)習(xí)成果突破定理證明這一難點(diǎn),指導(dǎo)學(xué)生嚴(yán)謹(jǐn)、合理的書寫格式,培養(yǎng)學(xué)生的邏輯思維能力和語言表達(dá)能力。
為了充分調(diào)動學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)優(yōu)化高效的數(shù)學(xué)課堂,我以導(dǎo)學(xué)案的方式循序見進(jìn)的設(shè)計教學(xué)流程。
以學(xué)生必讀課本48—52頁,選讀課本55、56頁的課前預(yù)習(xí)為前提,共分四個環(huán)節(jié)來進(jìn)行教學(xué)
1、勾股定理的探究:讓學(xué)生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學(xué)思想引導(dǎo)好學(xué)生課前預(yù)習(xí),再以檢查預(yù)習(xí)成果的形式為新知的探究作好鋪墊。
2、勾股定理的證明:以學(xué)生拼圖展示、講解預(yù)習(xí)成果的形式完成對定理的證明。
3、勾股定理的應(yīng)用:以課堂練習(xí)、學(xué)生個性補(bǔ)充和老師適當(dāng)?shù)膫€性化追加的形式實(shí)現(xiàn)對定理的靈活應(yīng)用。
4、學(xué)后反思:以學(xué)生小結(jié)的形式引導(dǎo)學(xué)生從知識、情感兩方面實(shí)現(xiàn)對本節(jié)內(nèi)容的鞏固與升華。
為了給學(xué)生營造一個和諧、民主、平等而高效的數(shù)學(xué)課堂,我以新課程標(biāo)準(zhǔn)的基本理念和總體目標(biāo)為指導(dǎo)思想,面向全體學(xué)生,選擇適當(dāng)?shù)钠瘘c(diǎn)和方法,充分發(fā)揮學(xué)生的主體地位與教師主導(dǎo)作用相統(tǒng)一的原則。教學(xué)中注重學(xué)生的動手操作能力的培養(yǎng),化繁為簡,化抽象為直觀。例如我以展示預(yù)習(xí)成果為主線,以學(xué)生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費(fèi)時費(fèi)力的方式,既讓每個學(xué)生都能積極的參與進(jìn)來,培養(yǎng)學(xué)生的語言表達(dá)能力、邏輯推理能力,又達(dá)到了直觀高效的效果。
教學(xué)中我注重人文環(huán)境的創(chuàng)設(shè),使數(shù)學(xué)課堂充滿親切、民主的氣氛,例如整節(jié)課我以學(xué)生的操作、展示、講解、個性補(bǔ)充為主,拉近了數(shù)學(xué)與學(xué)生的距離,激發(fā)了學(xué)生的學(xué)習(xí)興趣;為了使不同的學(xué)生得到不同的發(fā)展,人人學(xué)有價值的數(shù)學(xué),在教學(xué)中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設(shè)身邊暖房工程為情境,體現(xiàn)數(shù)學(xué)的生活化;以一題多變、中考題改編等形式進(jìn)行練習(xí)題的層層深入,體現(xiàn)數(shù)學(xué)的變化美。
以學(xué)生個性補(bǔ)充的形式促進(jìn)課堂新的生成,最大限度的培養(yǎng)學(xué)生創(chuàng)新思維,使不同的人在數(shù)學(xué)上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學(xué)生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設(shè)了具有獨(dú)特教學(xué)風(fēng)格的作文式數(shù)學(xué)課堂。而多媒體教學(xué)的引入更為學(xué)生提供了廣闊的思考空間和時間;同時,我注重對學(xué)生進(jìn)行數(shù)學(xué)文化的薰陶和數(shù)學(xué)思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結(jié)時由“勾股樹”到“智慧樹”的希望寄語。
有關(guān)勾股定理小論文(精)二
本課時是華師大版八年級(上)數(shù)學(xué)第14章第二節(jié)內(nèi)容,是在掌握勾股定理的基礎(chǔ)上對勾股定理的應(yīng)用之一。 勾股定理是我國古數(shù)學(xué)的一項(xiàng)偉大成就。勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實(shí)際生活的各個方面。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實(shí)際分析,使學(xué)生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實(shí)際生活中的廣泛應(yīng)用。 據(jù)此,制定教學(xué)目標(biāo)如下:
1、知識和方法目標(biāo):通過對一些典型題目的思考,練習(xí),能正確熟練地進(jìn)行勾股定理有關(guān)計算,深入對勾股定理的理解。
2、過程與方法目標(biāo):通過對一些題目的探討,以達(dá)到掌握知識的目的。
3、情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美。
教學(xué)重點(diǎn):勾股定理的應(yīng)用。
教學(xué)難點(diǎn):勾股定理的正確使用。
教學(xué)關(guān)鍵:在現(xiàn)實(shí)情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理。
1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。
2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實(shí)物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動手,動腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下:
勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來學(xué)習(xí)這個定理在實(shí)際生活中的應(yīng)用。
1、如圖所示,有一個圓柱,它的高ab等于4厘米,底面周長等于20厘米,在圓柱下底面的a點(diǎn)有一只螞蟻,它想吃到上底面與a點(diǎn)相對的c點(diǎn)處的食物,沿圓柱側(cè)面爬行的最短路線是多少?(課本p57圖14.2.1)
①學(xué)生取出自制圓柱,,嘗試從a點(diǎn)到c點(diǎn)沿圓柱側(cè)面畫出幾條路線。思考:那條路線最短?
②如圖,將圓柱側(cè)面剪開展成一個長方形,從a點(diǎn)到c點(diǎn)的最短路線是什么?你畫得對嗎?
③螞蟻從a點(diǎn)出發(fā),想吃到c點(diǎn)處的食物,它沿圓柱側(cè)面爬行的最短路線是什么?
思路點(diǎn)撥:引導(dǎo)學(xué)生在自制的圓柱側(cè)面上尋找最短路線;提醒學(xué)生將圓柱側(cè)面展開成長方形,引導(dǎo)學(xué)生觀察分析發(fā)現(xiàn)“兩點(diǎn)之間的所有線中,線段最短”。 學(xué)生在自主探索的基礎(chǔ)上興趣高漲,氣氛異常的活躍,他們發(fā)現(xiàn)螞蟻從a點(diǎn)往上爬到b點(diǎn)后順著直徑爬向c點(diǎn)爬行的路線是最短的!我也意外的發(fā)現(xiàn)了這種爬法是正確的,但是課本上是順著側(cè)面往上爬的,我就告訴學(xué)生:“課本中的圓柱體是沒有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2.(課本p58圖14.2.3)
思路點(diǎn)撥:廠門的寬度是足夠的,這個問題的關(guān)鍵是觀察當(dāng)卡車位于廠門正中間時其高度是否小于ch,點(diǎn)d在離廠門中線0.8米處,且cd⊥ab, 與地面交于h,尋找出rt△ocd,運(yùn)用勾股定理求出2.3m,cd= = =0.6,ch=0.6+2.3=2.92.5可見卡車能順利通過 。詳細(xì)解題過程看課本 引導(dǎo)學(xué)生完成p58做一做。
1、課本p58練習(xí)第1,2題。
2、探究: 一門框的尺寸如圖所示,一塊長3米,寬2.2米的薄木板是否能從門框內(nèi)通過?為什么?
直角三角形在實(shí)際生活中有更為廣泛的應(yīng)用希望同學(xué)們能緊緊抓住直角三角形的性質(zhì),學(xué)透勾股定理的具體應(yīng)用,那樣就能很輕松的解決現(xiàn)實(shí)生活中的許多問題,達(dá)到事倍功半的效果。
課本p60習(xí)題14.2第1,2,3題。
有關(guān)勾股定理小論文(精)三
《垂徑定理》九年級數(shù)學(xué)上冊教學(xué)反思
“垂徑定理”是圓的重要性質(zhì)之一,也是全章的基礎(chǔ)之一,在整章中占有舉足輕重的地位,是今后研究圓與其他圖形位置關(guān)系和數(shù)量關(guān)系的基礎(chǔ),這些知識在日常生活和生產(chǎn)中有廣泛的應(yīng)用。由于垂徑定理及其推論反映了圓的重要性質(zhì),是證明線段相等、角相等、垂直關(guān)系的重要依據(jù),因此,它是整節(jié)書的重點(diǎn)及難點(diǎn)。
對本節(jié)課的教學(xué)我有以下幾點(diǎn)反思:
1、本節(jié)課主要有兩方面的內(nèi)容:一是圓的軸對稱性,二是垂徑定理及其推論。開始以趙州橋的問題引入課題,帶著問題進(jìn)行學(xué)習(xí),學(xué)習(xí)有目標(biāo),圓的軸對稱性主要是通過動手操作得出結(jié)論,圓是軸對稱圖形,根據(jù)軸對稱性進(jìn)一步研究圓中相等的弦,弧得出垂徑定理及其推論。利用此定理再去解決趙州橋問題,每一個環(huán)節(jié)都是環(huán)環(huán)相扣,不是孤立存在的。
2.在數(shù)學(xué)教學(xué)中,語言的嚴(yán)密性,邏輯性很重要的,而我在課堂上,尤其是知識點(diǎn)的聯(lián)系方面的引導(dǎo)詞,結(jié)論的表述,更加需要再努力鉆研.今后我將在這方面下工夫,在去聽其他數(shù)學(xué)老師的課時,要注意其他老師在知識點(diǎn)同知識點(diǎn)之間的過渡語句.
3在教案設(shè)計方面,在時間上把握得不夠準(zhǔn)確。有點(diǎn)前松后緊。前面在復(fù)習(xí)的部分應(yīng)該加些關(guān)于勾股定理的計算的題目,使學(xué)生在后面解直角三角形時能夠更加快,更熟練;在多媒體中,題目的梯度設(shè)計雖然很好但時間緊練習(xí)題量太小。
4,其實(shí)這節(jié)課還有個作圖思想要灌輸給學(xué)生,即教學(xué)生如果見到弦心距,弦,那么直接連半徑構(gòu)成直角三角形;如果就是只知道一條弦的題目,就要連弦心距都要作出來,應(yīng)加強(qiáng)兩種題目的訓(xùn)練。.
通過反思這一課的課堂教學(xué),我認(rèn)識到要善于處理好教學(xué)中知識傳授與能力培養(yǎng)的關(guān)系,巧妙地引導(dǎo)學(xué)生解決生活中的數(shù)學(xué)問題。不斷地激發(fā)學(xué)生的學(xué)習(xí)積極性與主動性,培養(yǎng)學(xué)生思維能力、想象力和創(chuàng)新精神,使每個學(xué)生的身心都能得到充分的發(fā)展。這些問題給了我一個今后的努力的方向.在今后的教學(xué)中,我會更加努力。
有關(guān)勾股定理小論文(精)四
勾股定理是九年制義務(wù)教育教科書八年級下冊第十七章的內(nèi)容,是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。
針對八年級學(xué)生的知識結(jié)構(gòu)、心理特征及學(xué)生的實(shí)際情況,可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
(一)知識與技能
1、體驗(yàn)勾股定理的探索過程,會運(yùn)用勾股定理解決簡單的問題。
(二)過程與方法
1、讓學(xué)生經(jīng)歷用面積法探索勾股定理的過程,體會數(shù)形結(jié)合的思想,滲透觀察、歸納、猜想、驗(yàn)證的數(shù)學(xué)方法,體驗(yàn)從特殊到一般的邏輯推理過程。
(三)情感態(tài)度與價值觀
1、通過了解勾股定理的歷史,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵學(xué)生發(fā)奮學(xué)習(xí)。
2、讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿了探索和創(chuàng)造,感受數(shù)學(xué)之美,探究之趣。
重點(diǎn):會用勾股定理求直角三角形的邊長
難點(diǎn):勾股定理的探索過程
多媒體課件
6.1第一學(xué)時
教學(xué)活動
活動1
【導(dǎo)入】欣賞圖片,了解歷史
2002年在北京召開了第24屆國際數(shù)學(xué)家大會,它是最高水平的全球性數(shù)學(xué)科學(xué)學(xué)術(shù)會議,被譽(yù)為數(shù)學(xué)界的“奧運(yùn)會”.這就是本屆大會的會徽的圖案.
(1)你見過這個圖案嗎?
(2)你聽說過“勾股定理”嗎?
學(xué)生活動:學(xué)生觀察圖片,發(fā)表見解。
資源準(zhǔn)備:教師演示多媒體課件
設(shè)計意圖:從現(xiàn)實(shí)生活中提出“趙爽弦圖”,為學(xué)生能夠積極主動地投入到探索活動創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)熱情,同時為探索勾股定理提供背景材料。
活動2【講授】探索勾股定理
探究一:探索直角三角形三邊的特殊關(guān)系:
(1)畫一直角三角形,使其兩邊滿足下面的條件,測量第三邊的長度,完成下表;
直角三角形1
直角邊一a=3
直角邊二b=4
斜邊c=?
猜想三邊關(guān)系滿足關(guān)系:
直角三角形2
直角邊一a=5
直角邊二b=?
斜邊c=13
猜想三邊關(guān)系滿足關(guān)系:
(2)猜想:直角三角形的三邊關(guān)系為
探究二:如果下圖中小方格的邊長是1,觀察圖形,完成下表,并與同學(xué)交流:你是怎樣得到的?
思考:每個圖中正方形的面積與三角形的邊長有何關(guān)系?歸納得出勾股定理。
勾股定理:
直角三角形等于
幾何語言表述:
如圖,在rtδabc中,c=90°,則:
若bc=a,ac=b,ab=c,則上面的定理可以表示為:
學(xué)生活動:在獨(dú)立探究的基礎(chǔ)上,學(xué)生分組交流。
資源準(zhǔn)備:教師演示多媒體課件
設(shè)計意圖:滲透從特殊到一般的數(shù)學(xué)思想。為學(xué)生提供參與數(shù)學(xué)活動的時間和空間,發(fā)揮學(xué)生的主體作用;培養(yǎng)學(xué)生的類比遷移能力及探索問題的能力,使學(xué)生在相互欣賞、爭辯、互助中得到提高。
活動3【講授】證明勾股定理
是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對一個一般的直角三角形進(jìn)行證明.到目前為止,對這個命題的證明方法已有幾百種之多.下面,我們就來看一看我國數(shù)學(xué)家趙爽是怎樣證明這個命題的。
(1)以直角三角形abc的兩條直角邊a、b為邊作兩個正方形.你能通過剪、拼把它拼成弦圖的樣子嗎?
(2)面積分別怎樣表示?它們有什么關(guān)系呢?
例1:已知,在△abc中,∠c=90°,∠a、∠b、∠c的對邊
為a、b、c。求證:a2+b2=c2。
分析:
⑴讓學(xué)生準(zhǔn)備多個三角形模型,最好是有顏色的吹塑紙,
讓學(xué)生拼擺不同的形狀,利用面積相等進(jìn)行證明。
⑵拼成如圖所示,其等量關(guān)系為:
4s△+s小正=s大正
2ab+(b-a)2=c2
化簡可證
學(xué)生活動:學(xué)生在獨(dú)立思考的基礎(chǔ)上以小組為單位,動手拼接。
資源準(zhǔn)備:教師演示多媒體課件
設(shè)計意圖:通過拼圖活動,調(diào)動學(xué)生思維的積極性,鍛煉學(xué)生的動手實(shí)踐能力,為學(xué)生提供從事數(shù)學(xué)活動的機(jī)會,建立初步的空間觀念,發(fā)展形象思維。通過對定理的證明,讓學(xué)生確信定理的正確性。
活動4【練習(xí)】簡單應(yīng)用勾股定理解題
1、求下圖中字母所代表的正方形的面積
2、求出下列各圖中x的值。
3、如圖所示,強(qiáng)大的臺風(fēng)使得一根旗桿在離地面9米處折斷倒下,旗桿頂部落在離旗桿底部12米處。旗桿折斷之前有多高?
4、如圖,點(diǎn)c是以ab為直徑的半圓上一點(diǎn),∠acb=90°,ac=3,bc=4,則圖中陰影部分的面積是多少?
學(xué)生活動:學(xué)生獨(dú)立思考完成
設(shè)計意圖:教師利用學(xué)生已有的知識創(chuàng)設(shè)問題情境,有針對性地引導(dǎo)學(xué)生進(jìn)行練習(xí),為學(xué)習(xí)勾股定理在實(shí)際生活中的應(yīng)用做好鋪墊。
活動5【作業(yè)】總結(jié)反思,布置作業(yè)
1、本節(jié)課你有哪些收獲?
2、還有哪些疑問?
3、作業(yè):略
學(xué)生活動:學(xué)生歸納、總結(jié)談感受
設(shè)計意圖:通過小結(jié)能為學(xué)生從能力、情感、態(tài)度等方面關(guān)注學(xué)生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅。
活動6【講授】板書設(shè)計
勾股定理
一、定理:如果直角三角形的兩直角邊長分別為a,b,
斜邊為c,那么
二、證明:略
三、應(yīng)用:
活動7【作業(yè)】教學(xué)反思
本節(jié)課涉及了大量的有關(guān)勾股定理的背景知識,學(xué)生可以感受到勾股定理所蘊(yùn)含的濃郁的數(shù)學(xué)文化。教學(xué)中應(yīng)聆聽學(xué)生發(fā)言,尊重學(xué)生發(fā)展。積極引導(dǎo)學(xué)生深挖細(xì)究,體現(xiàn)過程方法。教學(xué)中應(yīng)著力激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,也要注重自主探索與合作交流,同時還要注意數(shù)學(xué)思想方法的滲透,為學(xué)生今后的發(fā)展拓展了空間。
17.1勾股定理
課時設(shè)計課堂實(shí)錄
17.1勾股定理
1第一學(xué)時教學(xué)活動活動1【導(dǎo)入】欣賞圖片,了解歷史
2002年在北京召開了第24屆國際數(shù)學(xué)家大會,它是最高水平的全球性數(shù)學(xué)科學(xué)學(xué)術(shù)會議,被譽(yù)為數(shù)學(xué)界的“奧運(yùn)會”.這就是本屆大會的會徽的圖案.
(1)你見過這個圖案嗎?
(2)你聽說過“勾股定理”嗎?
學(xué)生活動:學(xué)生觀察圖片,發(fā)表見解。
資源準(zhǔn)備:教師演示多媒體課件
設(shè)計意圖:從現(xiàn)實(shí)生活中提出“趙爽弦圖”,為學(xué)生能夠積極主動地投入到探索活動創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)熱情,同時為探索勾股定理提供背景材料。
活動2【講授】探索勾股定理
探究一:探索直角三角形三邊的特殊關(guān)系:
(1)畫一直角三角形,使其兩邊滿足下面的條件,測量第三邊的長度,完成下表;
直角三角形1
直角邊一a=3
直角邊二b=4
斜邊c=?
猜想三邊關(guān)系滿足關(guān)系:
直角三角形2
直角邊一a=5
直角邊二b=?
斜邊c=13
猜想三邊關(guān)系滿足關(guān)系:
(2)猜想:直角三角形的三邊關(guān)系為
探究二:如果下圖中小方格的邊長是1,觀察圖形,完成下表,并與同學(xué)交流:你是怎樣得到的?
思考:每個圖中正方形的面積與三角形的邊長有何關(guān)系?歸納得出勾股定理。
勾股定理:
直角三角形等于
幾何語言表述:
如圖,在rtδabc中,c=90°,則:
若bc=a,ac=b,ab=c,則上面的定理可以表示為:
學(xué)生活動:在獨(dú)立探究的基礎(chǔ)上,學(xué)生分組交流。
資源準(zhǔn)備:教師演示多媒體課件
設(shè)計意圖:滲透從特殊到一般的數(shù)學(xué)思想。為學(xué)生提供參與數(shù)學(xué)活動的時間和空間,發(fā)揮學(xué)生的主體作用;培養(yǎng)學(xué)生的類比遷移能力及探索問題的能力,使學(xué)生在相互欣賞、爭辯、互助中得到提高。
活動3【講授】證明勾股定理
是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對一個一般的直角三角形進(jìn)行證明.到目前為止,對這個命題的證明方法已有幾百種之多.下面,我們就來看一看我國數(shù)學(xué)家趙爽是怎樣證明這個命題的。
(1)以直角三角形abc的兩條直角邊a、b為邊作兩個正方形.你能通過剪、拼把它拼成弦圖的樣子嗎?
(2)面積分別怎樣表示?它們有什么關(guān)系呢?
例1:已知,在△abc中,∠c=90°,∠a、∠b、∠c的對邊
為a、b、c。求證:a2+b2=c2。
分析:
⑴讓學(xué)生準(zhǔn)備多個三角形模型,最好是有顏色的吹塑紙,
讓學(xué)生拼擺不同的形狀,利用面積相等進(jìn)行證明。
⑵拼成如圖所示,其等量關(guān)系為:
4s△+s小正=s大正
2ab+(b-a)2=c2
化簡可證
學(xué)生活動:學(xué)生在獨(dú)立思考的基礎(chǔ)上以小組為單位,動手拼接。
資源準(zhǔn)備:教師演示多媒體課件
設(shè)計意圖:通過拼圖活動,調(diào)動學(xué)生思維的積極性,鍛煉學(xué)生的動手實(shí)踐能力,為學(xué)生提供從事數(shù)學(xué)活動的機(jī)會,建立初步的空間觀念,發(fā)展形象思維。通過對定理的證明,讓學(xué)生確信定理的正確性。
活動4【練習(xí)】簡單應(yīng)用勾股定理解題
1、求下圖中字母所代表的正方形的面積
2、求出下列各圖中x的值。
3、如圖所示,強(qiáng)大的臺風(fēng)使得一根旗桿在離地面9米處折斷倒下,旗桿頂部落在離旗桿底部12米處。旗桿折斷之前有多高?
4、如圖,點(diǎn)c是以ab為直徑的半圓上一點(diǎn),∠acb=90°,ac=3,bc=4,則圖中陰影部分的面積是多少?
學(xué)生活動:學(xué)生獨(dú)立思考完成
設(shè)計意圖:教師利用學(xué)生已有的知識創(chuàng)設(shè)問題情境,有針對性地引導(dǎo)學(xué)生進(jìn)行練習(xí),為學(xué)習(xí)勾股定理在實(shí)際生活中的應(yīng)用做好鋪墊。
活動5【作業(yè)】總結(jié)反思,布置作業(yè)
1、本節(jié)課你有哪些收獲?
2、還有哪些疑問?
3、作業(yè):略
學(xué)生活動:學(xué)生歸納、總結(jié)談感受
設(shè)計意圖:通過小結(jié)能為學(xué)生從能力、情感、態(tài)度等方面關(guān)注學(xué)生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅。
活動6【講授】板書設(shè)計
勾股定理
一、定理:如果直角三角形的兩直角邊長分別為a,b,斜邊為c,那么
二、證明:略
三、應(yīng)用:
活動7【作業(yè)】教學(xué)反思
本節(jié)課涉及了大量的有關(guān)勾股定理的背景知識,學(xué)生可以感受到勾股定理所蘊(yùn)含的濃郁的數(shù)學(xué)文化。教學(xué)中應(yīng)聆聽學(xué)生發(fā)言,尊重學(xué)生發(fā)展。積極引導(dǎo)學(xué)生深挖細(xì)究,體現(xiàn)過程方法。教學(xué)中應(yīng)著力激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,也要注重自主探索與合作交流,同時還要注意數(shù)學(xué)思想方法的滲透,為學(xué)生今后的發(fā)展拓展了空間。
有關(guān)勾股定理小論文(精)五
一、知識與技能
1.掌握直角三角形的判別條件。
2.熟記一些勾股數(shù)。
3.掌握勾股定理的逆定理的探究方法。
二、過程與方法
1.用三邊的數(shù)量關(guān)系來判斷一個三角形是否為直角三角形,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想。
2.通過對rt△判別條件的研究,培養(yǎng)學(xué)生大膽猜想,勇于探索的創(chuàng)新精神。
三、情感態(tài)度與價值觀
1.通過介紹有關(guān)歷史資料,激發(fā)學(xué)生解決問題的愿望。
2.通過對勾股定理逆定理的探究;培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和創(chuàng)新精神。
教學(xué)重點(diǎn)探究勾股定理的逆定理,理解互逆命題,原命題、逆命題的有關(guān)概念及關(guān)系.理解并掌握勾股定理的逆定理,并會應(yīng)用。
教學(xué)難點(diǎn)理解勾股定理的逆定理的推導(dǎo)。
教具準(zhǔn)備多媒體課件。
一、創(chuàng)設(shè)問屬情境,引入新課
活動1
(1)總結(jié)直角三角形有哪些性質(zhì)。
(2)一個三角形,滿足什么條件是直角三角形?
設(shè)計意圖:通過對前面所學(xué)知識的歸納總結(jié),聯(lián)想到用三邊的關(guān)系是否可以判斷一個三角形為直角三角形,提高學(xué)生發(fā)現(xiàn)反思問題的能力。
師生行為學(xué)生分組討論,交流總結(jié);教師引導(dǎo)學(xué)生回憶。
本活動,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①能否積極主動地回憶,總結(jié)前面學(xué)過的舊知識;②能否“溫故知新”。
生:直角三角形有如下性質(zhì):
(1)有一個角是直角;
(2)兩個銳角互余;
(3)兩直角邊的平方和等于斜邊的平方;
(4)在含30°角的直角三角形中,30°的角所對的直角邊是斜邊的一半。
師:那么,一個三角形滿足什么條件,才能是直角三角形呢?
生:有一個內(nèi)角是90°,那么這個三角形就為直角三角形。
生:如果一個三角形,有兩個角的和是90°,那么這個三角形也是直角三角形。
師:前面我們剛學(xué)習(xí)了勾股定理,知道一個直角三角形的兩直角邊a,b斜邊c具有一定的數(shù)量關(guān)系即a2+b2=c2,我們是否可以不用角,而用三角形三邊的關(guān)系來判定它是否為直角三角形呢?我們來看一下古埃及人如何做?
二、講授新課
活動2
問題:據(jù)說古埃及人用下圖的方法畫直角:把一根長蠅打上等距離的13個結(jié),然后以3個結(jié),4個結(jié)、5個結(jié)的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角。
這個問題意味著,如果圍成的三角形的三邊分別為3、4、5。有下面的關(guān)系“32+42=52”。那么圍成的三角形是直角三角形。
畫畫看,如果三角形的三邊分別為2.5cm,6cm,6.5cm,有下面的關(guān)系,“2.52+62=6.52,畫出的三角形是直角三角形嗎?換成三邊分別為4cm、7.5cm、8.5cm.再試一試.
設(shè)計意圖:由特殊到一般,歸納猜想出“如果三角形三邊a,b,c滿足a2+b2=c2,那么這個三角形就為直免三角形的結(jié)論,培養(yǎng)學(xué)生動手操作能力和尋求解決數(shù)學(xué)問題的一般方法。
師生行為讓學(xué)生在小組內(nèi)共同合作,協(xié)手完成此活動。教師參與此活動,并給學(xué)生以提示、啟發(fā)。在本活動中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①能否積極動手參與;②能否從操作活動中,用數(shù)學(xué)語言歸納、猜想出結(jié)論;③學(xué)生是否有克服困難的勇氣。
生:我們不難發(fā)現(xiàn)上圖中,第(1)個結(jié)到第(4)個結(jié)是3個單位長度即ac=3;同理bc=4,ab=5.因?yàn)?2+42=52。我們圍成的三角形是直角三角形。
生:如果三角形的三邊分別是2.5cm,6cm,6.5cm.我們用尺規(guī)作圖的方法作此三角形,經(jīng)過測量后,發(fā)現(xiàn)6.5cm的邊所對的角是直角,并且2.52+62=6.52.
再換成三邊分別為4cm,7.5cm,8.5cm的三角形,目標(biāo)可以發(fā)現(xiàn)8.5cm的邊所對的角是直角,且也有42+7.52=8.52.
是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個直角三角形呢?
活動3下面的三組數(shù)分別是一個三角形的三邊長a,b,c
5,12,13;7,24,25;8,15,17。
(1)這三組效都滿足a2+b2=c2嗎?
(2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?
設(shè)計意圖:本活動通過讓學(xué)生按已知數(shù)據(jù)作出三角形,并測量三角形三個內(nèi)角的度數(shù)來進(jìn)一步獲得一個三角形是直角三角形的有關(guān)邊的.條件。
師生行為:學(xué)生進(jìn)一步以小組為單位,按給出的三組數(shù)作出三角形,從而更加堅信前面猜想出的結(jié)論。
教師對學(xué)生歸納出的結(jié)論應(yīng)給予解釋,我們將在下一節(jié)給出證明.本活動教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①對猜想出的結(jié)論是否還有疑慮;②能否積極主動的操作,并且很有耐心。
生:(1)這三組數(shù)都滿足a2+b2=c2。(2)以每組數(shù)為邊作出的三角形都是直角三角形。
師:很好,我們進(jìn)一步通過實(shí)際操作,猜想結(jié)論。
命題2如果三角形的三邊長a,b,c滿足a2+b2=c2那么這個三角形是直角三角形。
同時,我們也進(jìn)一步明白了古埃及人那樣做的道理.實(shí)際上,古代中國人也曾利用相似的方法得到直角,直至科技發(fā)達(dá)的今天。
有關(guān)勾股定理小論文(精)六
勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。
據(jù)此,制定教學(xué)目標(biāo)如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運(yùn)用勾股定理及其計算。
3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教學(xué)重點(diǎn):勾股定理的證明和應(yīng)用。
教學(xué)難點(diǎn):勾股定理的證明。
教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):
1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。
2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:
(一)創(chuàng)設(shè)情境以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形。如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。
3、板書課題,出示學(xué)習(xí)目標(biāo)。
(二)初步感知理解教材
教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知。體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。
(三)質(zhì)疑解難討論歸納
1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)學(xué)生的表現(xiàn)欲。
2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;
(1)這兩個圖形有什么特點(diǎn)?
(2)你能寫出這兩個圖形的面積嗎?
(3)如何運(yùn)用勾股定理?是否還有其他形式?
這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流;先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補(bǔ)充。教師及時進(jìn)行富有啟發(fā)性的點(diǎn)撥。最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習(xí)強(qiáng)化提高
1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運(yùn)用。針對例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。
(五)歸納總結(jié)練習(xí)反饋
引導(dǎo)學(xué)生對知識要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。
本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。
有關(guān)勾股定理小論文(精)七
尊敬的各位考官:
大家好,我是x號考生,今天我說課的題目是《勾股定理的逆定理》。
新課標(biāo)指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。
首先來談一談我對教材的理解。
本節(jié)課選自人教版初中數(shù)學(xué)八年級下冊第十七章第二節(jié)《勾股定理的逆定理》,它是在學(xué)生掌握勾股定理及一般三角形性質(zhì)的基礎(chǔ)上進(jìn)行教學(xué)的。應(yīng)用前面學(xué)習(xí)的勾股定理及三角形全等證明逆定理是本節(jié)課的關(guān)鍵步驟,同時本節(jié)課又豐富了三角形的性質(zhì),是后面幾何問題的基礎(chǔ)理論性知識。
接下來談?wù)剬W(xué)生的實(shí)際情況。本階段的學(xué)生已經(jīng)掌握了一定的基礎(chǔ)知識,處于由幾何內(nèi)容的初級向高級行進(jìn)的過程。他們的幾何思維正在逐步形成和發(fā)展,對幾何題目具有一定的分析、想象、概括能力,具有對未知事物的新鮮感和探求欲。同時也要注意到學(xué)生能力的不成熟,教學(xué)中鼓勵與引導(dǎo)并重。
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下教學(xué)目標(biāo):
(一)知識與技能
理解并掌握勾股定理的逆定理,會應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
(二)過程與方法
經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
(三)情感、態(tài)度與價值觀
體會事物之間的聯(lián)系,感受幾何的魅力。
在教學(xué)目標(biāo)的實(shí)現(xiàn)過程中,教學(xué)重點(diǎn)是勾股定理的逆定理及其證明,教學(xué)難點(diǎn)是勾股定理的逆定理的證明。
為了突破重點(diǎn),解決難點(diǎn),順利達(dá)成教學(xué)目標(biāo),教學(xué)中我將主要采用小組討論、自主探究的教學(xué)方法,輔以適量的教師講解和引導(dǎo),把課堂還給學(xué)生。
下面我將重點(diǎn)談?wù)勎覍虒W(xué)過程的設(shè)計。
(一)導(dǎo)入新課
課堂伊始,我采用復(fù)習(xí)舊知與創(chuàng)設(shè)情境相結(jié)合的導(dǎo)入方式。首先我會帶領(lǐng)學(xué)生復(fù)習(xí)勾股定理并明確其題設(shè)和結(jié)論,為后面提出逆命題、逆定理做鋪墊。接著提問學(xué)生如何畫直角三角形,學(xué)生很容易想到用三角尺或量角器。此時我會要求學(xué)生不能用繩子以外的工具,借助學(xué)生的困惑,給出古埃及人利用等長的3、4、5個繩結(jié)間距畫直角三角形的情境。以古埃及人所用方法中蘊(yùn)含何道理為切入點(diǎn)引出課題。
通過這樣的導(dǎo)入方式,能夠帶領(lǐng)學(xué)生回顧上節(jié)課的內(nèi)容,為本節(jié)課奠定好基礎(chǔ),同時用情境激發(fā)學(xué)生的好奇心和求知欲,更好地展開教學(xué)。
(二)講解新知
接下來是最重要的新授環(huán)節(jié)。
請學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確
出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學(xué)生計算驗(yàn)證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長的三角形檢驗(yàn)是否為直角三角形。
學(xué)生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長的三角形檢驗(yàn)是否為直角三角形。
在得到肯定結(jié)論后,引導(dǎo)學(xué)生基于以上例子大膽猜想得出命題。
您可能關(guān)注的文檔
- 2023年學(xué)習(xí)韓語的心得體會匯總(優(yōu)秀14篇)
- 生豬定點(diǎn)屠宰管理方案范文匯總 生豬定點(diǎn)屠宰場經(jīng)營方案(四篇)
- 2023年觀察日記睡蓮?fù)ㄓ?實(shí)用19篇)
- 高二語文第三冊第四單元自讀課文美腿與丑腿教學(xué)設(shè)計 美腿與丑腿課文的基本觀點(diǎn)(三篇)
- 高中學(xué)生堅守夢想?yún)R總(精選11篇)
- 預(yù)防艾滋病宣傳班會(精選8篇)
- 龍門洞兩則游記散文簡短 龍門石窟美文游記(六篇)
- 2023年推薦運(yùn)動會閉幕式總結(jié)(通用12篇)
- 太陽姑娘(模板11篇)
- 新時代教育方針的心得體會范文如何寫(匯總13篇)
- 學(xué)生會秘書處的職責(zé)和工作總結(jié)(專業(yè)17篇)
- 教育工作者分享故事的感悟(熱門18篇)
- 學(xué)生在大學(xué)學(xué)生會秘書處的工作總結(jié)大全(15篇)
- 行政助理的自我介紹(專業(yè)19篇)
- 職業(yè)顧問的職業(yè)發(fā)展心得(精選19篇)
- 法治興則民族興的實(shí)用心得體會(通用15篇)
- 教師在社區(qū)團(tuán)委的工作總結(jié)(模板19篇)
- 教育工作者的社區(qū)團(tuán)委工作總結(jié)(優(yōu)質(zhì)22篇)
- 體育教練軍訓(xùn)心得體會(優(yōu)秀19篇)
- 學(xué)生軍訓(xùn)心得體會范文(21篇)
- 青年軍訓(xùn)第二天心得(實(shí)用18篇)
- 警察慰問春節(jié)虎年家屬的慰問信(優(yōu)秀18篇)
- 家屬慰問春節(jié)虎年的慰問信(實(shí)用20篇)
- 公務(wù)員慰問春節(jié)虎年家屬的慰問信(優(yōu)質(zhì)21篇)
- 植物生物學(xué)課程心得體會(專業(yè)20篇)
- 政府官員參與新冠肺炎疫情防控工作方案的重要性(匯總23篇)
- 大學(xué)生創(chuàng)業(yè)計劃競賽范文(18篇)
- 教育工作者行政工作安排范文(15篇)
- 編輯教學(xué)秘書的工作總結(jié)(匯總17篇)
- 學(xué)校行政人員行政工作職責(zé)大全(18篇)